Abstract
Calcium alginate dressings have beneficial effects on wound healing by providing a moist wound environment. However, cytotoxicity and the nonbiodegradable nature of calcium alginate dressings induce unresolved chronic foreign-body reaction. In this study, a novel freeze-dried alginate gel dressing (AGA-100) low in calcium ions was evaluated for cytotoxicity to L929 cells in vitro and in full-thickness pig wounds in vivo. Cytotoxicity testing on L929 cells showed the cytocompatibility of AGA-100 extracts, while extracts from Kaltostat, a well-established alginate dressing, induced cytopathic effects. In an in vivo study using pigskin, AGA-100, Kaltostat, and gauze were applied on 1-in-diameter circular full-thickness wounds on the back of pigs and the time course of wound closure was evaluated. Kaltostat and gauze dressings were used as controls. For histologic evaluation, wound tissue was harvested on day 18. AGA-100-treated wounds showed rapid wound closure compared to control wounds on day 15. Foreign-body reaction was marked in Kaltostat- and gauze-treated wounds, and differed significantly from AGA-100-treated wounds. Based on these data, AGA-100 could reduce the cytotoxicity to fibroblasts and foreign-body reaction that have been observed with currently available calcium alginate dressings; it was also found to be useful as an alginate dressing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have