Abstract

The efficacy of nitrate addition, with and without inoculation with a sulfide-resistant strain ofThiobacillus denitrificans (strain F), in reducing sulfide levels in an experimental system using cores and subsurface formation water from a gas storage facility was examined. The addition of nitrate (40 mM) alone to the formation water injected into core systems operated at hydraulic retention times of 3.2 and 16.7 h resulted in lower effluent sulfide concentrations, from an influent concentration of about 170–190 μM to an effluent concentration of 110 and 3 μM, respectively. A reduction in effluent nitrate concentrations in both core systems indicated the presence of indigenous nitrate-using populations. After strain F was inoculated into the core system operated at the shorter retention time, the effluent sulfide concentration decreased from 110 to 16–25 μM. The effluent sulfate concentration increased, and the effluent nitrate concentration decreased concomitant with the presence of high concentrations of denitrifying thiobacilli in the inoculated core system. The denitrifying thiobacilli detected after inoculation were presumed to be strain F since these organisms were not detected in this core system before inoculation, or in any of the samples from the uninoculated core system. These data suggest that the efficacy of the nitrate treatment may depend on the residence times of the liquids in the core system, and that inoculation with strain F was required to reduce sulfide levels to <20 μM in the core system operated at a short hydraulic retention time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call