Abstract

ABSTRACT The accuracy of the large-eddy simulation (LES) of turbulent flows can be increased by using high-order numerical schemes in space and time, due to a decrease in numerical errors. This work investigates a high-order compact finite-volume scheme suitable for LES. The explicit fourth-order Runge-Kutta (RK) scheme for time marching and fourth-order compact schemes for spatial derivatives using a cell-averaged approach are implemented. Different subgrid-scale models and the effect of explicit filtering in a fully turbulent channel flow are studied. In this flow, the fourth-order compact finite-volume method in space, and fourth-order RK in time in conjunction with the dynamic Smagorinsky model with explicit filter-grid size ratio of , show the best agreement with the available reference data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.