Abstract

In the development of new implants biomechanical testing is essential. Since human bones vary markedly in density and geometry their suitability for biomechanical testing is limited. In contrast artificial bones are of great uniformity and therefore appropriate for biomechanical testing. However, the applied artificial bones have to be proved as comparable to human bone. An anatomical shaped artificial bone representing the distal human femur was created by foaming polyurethane. To get a bone model with properties of osteoporotic bone a foam density of 150 kg/m3 was used. The biomechanical properties of our artificial bones were evaluated against eight mildly osteoporotic fresh frozen human femora by mechanical testing. At the artificial bones all tested parameters showed a very small variation. In contrast significant correlation between bone mass density and tested parameters was found for the human bones. The artificial bones reached 39% of the compression strength and 41% of the screw pullout force of the human bone. In indentation testing the artificial bones reached 27% (cancellous) and 59% (cortical) respectively of the human bones strength. Regarding Shore hardness artificial bone and human bone showed comparable results for the cortical layer and at the cancellous layer the artificial bone reached 57% of human bones hardness. Our described method for customizing of artificial bones regarding their shape and bone stock quality provides suitable results. In relation to the as mildly osteoporotic classified human bones we assume that the biomechanical properties matching to serve osteoporotic bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.