Abstract
The purpose of the current study was to evaluate the performance of a continuous-time random-walk (CTRW) diffusion model for differentiating malignant and benign breast lesions and to consider the potential association between CTRW parameters and the Ki-67 expression. Sixty-four patients (46.2 ± 11.4 years) with breast lesions (29 malignant and 35 benign) were evaluated with the CTRW model, intravoxel incoherent motion model, and diffusion-weighted imaging. Echo planar diffusion-weighted imaging was conducted using 13 b-values (0-3000 s/mm2 ). Three CTRW model parameters, including an anomalous diffusion coefficient Dm , and two parameters related to temporal and spatial diffusion heterogeneity, α and β, respectively, were obtained, and had MRI b-values of 0-3000 s/mm2 . Receiver operating characteristic (ROC) analysis was conducted to determine the sensitivity, specificity, and diagnostic accuracy of CTRW parameters for differentiating malignant from benign breast lesions. In malignant breast lesions, the CTRW parameters Dm , α, and β were significantly lower than the corresponding parameters of benign breast lesions. In the malignant breast lesion group, the CTRW parameter Dm was significantly lower in high Ki-67 expression than in low Ki-67 expression. In ROC analysis, the combination of CTRW parameters (Dm , α, β) demonstrated the highest area under the curve value (0.985) and diagnostic accuracy (94.23%) in differentiating malignant and benign breast lesions. The CTRW model effectively differentiated malignant from benign breast lesions. The CTRW diffusion model offers a new way for noninvasive assessment of breast malignancy and better understanding of the proliferation of malignant lesions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.