Abstract

A collisional-radiative (CR) model that extracts the electron temperature, Te, of hydrogen plasmas from Balmer-line-ratio measurements is examined for the plasma electron density, ne, and Te ranges of 1010-1015 cm-3 and 5-500eV, respectively. The CR code, developed and implemented in Python, has a forward component that computes the densities of excited states up to n = 15 as functions of Te, ne, and the molecular-to-atomic neutral ratio r(H2/H). The backward component provides ne and r(H2/H) as functions of the Balmer ratios to predict the Te. The model assumes Maxwellian electrons. The density profiles of the electrons and of the molecular and atomic hydrogen neutrals are shown to be of great importance, as is the accuracy of the line-ratio measurement method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call