Abstract
Despite its established safety, efficacy, and relative simplicity, CPAP treatment is not widely available for newborns and infants in low- and middle-income settings. A novel bubble CPAP system was designed to address the gaps in quality and accessibility of existing CPAP systems by providing blended, humidified, and pressurized gases without the need for electricity, compressed air, or manual power. This was the first study that tested the performance of the system with a simulated patient model. METHODS: In a spontaneously breathing 3-dimensional printed nasal airway model of a preterm neonate, CPAP performance was assessed based on delivered pressure, oxygen level, and humidity at different settings. RESULTS: Preliminary device performance characteristics were within 5% among 3 separate devices. Performance testing showed accurate control of CPAP and oxygen concentration at all settings with the bubble CPAP system. Lung model pressure and oxygen concentration were shown to stay within ±0.5 cm H2O and ±4% of full scale of the device settings, respectively, with relative humidity > 80%. CONCLUSIONS: Performance testing of the bubble CPAP system demonstrated accurate control of CPAP and oxygen concentration with humidity levels suitable for premature newborns on noninvasive support.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.