Abstract

Isothermal amplification assay is a novel simple detection technology that amplifies DNA with high speed, efficiency, and specificity under isothermal conditions. The objective of this study was to evaluate the effectiveness of the 3M Molecular Detection System (MDS) and ANSR Pathogen Detection System (PDS) for the detection of Salmonella in egg products as compared to the Food and Drug Administration's Bacteriological Analytical Manual (BAM) culture method and a modified culture method (3M MDS and ANSR PDS preferred method). Two Salmonella ser. Enteritidis (18579, PT4; CDC_2010K_1441, PT8), one Salmonella ser. Heidelberg (607310-1), and one Salmonella ser. Typhimurium (0723) isolates were used in this study. Seven wet egg products and 13 dry egg products were inoculated with these strains individually at 1 to 5 CFU/25 g. One set of test portions was prepared following FDA BAM procedures [with lactose broth (LB) as pre-enrichment broth]. Another set of test portions was prepared using buffered peptone water (BPW) as pre-enrichment broth, as instructed by the 2 detection systems. Results from 3M MDS and ANSR PDS were 100% in agreement with their BPW-based culture method results. When LB was used as pre-enrichment broth, the number of Salmonella positive test portions (80 tested), identified with the BAM, 3M MDS, and ANSR PDS, were 63, 61, and 60, respectively. In conclusion, both 3M MDS and ANSR PDS Salmonella assays were as effective as their BPW based culture methods and were equivalent to the BAM culture method for the detection of Salmonella in egg products. These sensitive isothermal assays can be used as rapid detection tools for Salmonella in egg products provided that BPW is used as pre-enrichment broth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.