Abstract

RVE combined with finite element analysis (FEA) is a very popular method to predict the mechanical property of the composite reinforced by short fibers. In the conventional method, generally the “tie” approach is used. By this method, the FE model with high fiber aspect ratio can not be achieved and the non-convergence of the numerical calculation may appear because of the complex mesh. The embedded element techinique is considered to be a replaceable method . Using this method, the mechanical behavior of composite with high fiber aspect ratio would be simulated. Therefore, in this study, the 3D solid element was employed for the FE model with multi cylinder particles. The comparisions of the Mise stress and the displacement between the embedded and conventional method indicate that compared with the stress transfer, the simulated result of composite stiffness is more accurate. In addition, the effects of model size, fiber orientated angle, fiber volume fraction and fiber aspect ratio were investigated. The numerical results were compared with the Mori-Tanaka model and the good agreements verify the applicability of the embedded element technique we studied in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.