Abstract

Recently, 15N-detected multidimensional NMR experiments have been introduced for the investigation of proteins. Utilization of the slow transverse relaxation of nitrogen nuclei in a 15N-TROSY experiment allowed recording of high quality spectra for high molecular weight proteins, even in the absence of deuteration. Here, we demonstrate the applicability of three 15N-detected H-N correlation experiments (TROSY, BEST-TROSY and HSQC) to RNA. With the newly established 15N-detected BEST-TROSY experiment, which proves to be the most sensitive 15N-detected H-N correlation experiment, spectra for five RNA molecules ranging in size from 5 to 100kDa were recorded. These spectra yielded high resolution in the 15N-dimension even for larger RNAs since the increase in line width with molecular weight is more pronounced in the 1H- than in the 15N-dimension. Further, we could experimentally validate the difference in relaxation behavior of imino groups in AU and GC base pairs. Additionally, we showed that 15N-detected experiments theoretically should benefit from sensitivity and resolution advantages at higher static fields but that the latter is obscured by exchange dynamics within the RNAs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.