Abstract

A color tuning index (ICT) parameter for evaluating the color change capability of color-tunable organic light-emitting diodes (CT-OLEDs) was proposed and formulated. And a series of CT-OLEDs, consisting of five different carrier/exciton adjusting interlayers (C/EALs) inserted between two complementary emitting layers, were fabricated and applied to disclose the relationship between ICT and C/EALs. The result showed that the trend of electroluminescence spectra behavior in CT-OLEDs has good accordance with ICT values, indicating that the ICT parameter is feasible for the evaluation of color variation. Meanwhile, by changing energy level and C/EAL thickness, the optimized device with the widest color tuning range was based on N,N′-dicarbazolyl-3,5-benzene C/EAL, exhibiting the highest ICT value of 41.2%. Based on carrier quadratic hopping theory and exciton transfer model, two fitting ICT formulas derived from the highest occupied molecular orbital (HOMO) energy level and triplet energy level were simulated. Finally, a color tuning prediction (CTP) model was developed to deduce the ICT via C/EAL HOMO and triplet energy levels, and verified by the fabricated OLEDs with five different C/EALs. We believe that the CTP model assisted with ICT parameter will be helpful for fabricating high performance CT-OLEDs with a broad range of color tuning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.