Abstract
The purpose of this article is to evaluate and predict blast-induced ground vibration at Shur River Dam in Iran using different empirical vibration predictors and artificial neural network (ANN) model. Ground vibration is a seismic wave that spreads out from the blasthole when explosive charge is detonated in a confined manner. Ground vibrations were recorded and monitored in and around the Shur River Dam, Iran, at different vulnerable and strategic locations. A total of 20 blast vibration records were monitored, out of which 16 data sets were used for training of the ANN model as well as determining site constants of various vibration predictors. The rest of the 4 blast vibration data sets were used for the validation and comparison of the result of ANN and different empirical predictors. Performances of the different predictor models were assessed using standard statistical evaluation criteria. Finally, it was found that the ANN model is more accurate as compared to the various empirical models available. As such, a high conformity (R2 = 0.927) was observed between the measured and predicted peak particle velocity by the developed ANN model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.