Abstract
ABSTRACT Downward shortwave radiation (DSR) is a critical variable in energy balance driving Earth’s surface processes. Satellite-derived and reanalysis DSR products have been developed and continuously improved during the last decades. However, as those products have different temporal resolutions, their performances in different time scales have not been well-documented, particularly in China. This study intended to evaluate several DSR products across multiple time scales (i.e. instantaneous, 1-hourly, daily, and monthly average) and ecosystems in China. Six DSR products, including GLASS, BESS, CLARA-A2, MCD18A1, ERA5 and MERRA-2, were evaluated against ground measurements at Chinese Ecosystem Research Network (CERN) and integrated land-atmosphere interaction observation (TPDC) sites from 2009 to 2012. The instantaneous DSR of MCD18 showed a root mean square error (RMSE) of 146.02 W/m2. The hourly RMSE of ERA5 (155.52 W/m2) was largely smaller than MERRA-2 (188.53 W/m2). On the daily and monthly scale, BESS had the most optimized accuracy among the six products (RMSE of 36.82 W/m2). For the satellite-derived DSR products, the monthly accuracy at CERN can meet the threshold accuracy requirement set by World Meteorological Organization (WMO) for Global Numerical Weather Prediction (20 W/m2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.