Abstract

Hyperglycemia-induced oxidative stress can cause liver damage in diabetes, and protein hydrolysates with antidiabetic and antioxidant properties are emerging as a potential therapy. In this study, protective effects of casein hydrolysates against live oxidative damage in streptozotocin/high-fat-induced diabetic rats were studied and potentially bioactive peptides were explored by an integrated approach of differential peptide and in silico analysis. Results showed that different casein hydrolysates significantly alleviated liver oxidative damage (p < 0.05) via different mechanisms. Particularly, casein hydrolyzed by a papain-flavourzyme combination (P-FCH) treatment significantly improved liver antioxidant enzyme activities by enhancing nuclear factor erythroid 2-related factor 2 (Nrf2) transcription (p < 0.05). Furthermore, 18 peptides were screened as potential bioactive peptides by analyzing differential peptides among different hydrolysates combined with in silico prediction. Among them, the dipeptide WM might directly inhibit the Kelch-like ECH-associated protein 1 (Keap1)-Nrf2 interaction as potential Nrf2 activators. These results suggested that P-FCH might be an alternative way to treat liver damage in diabetes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.