Abstract

The energy performance of a nonvolatile static random access memory (NV-SRAM) cell for power gating applications was quantitatively analyzed for the first time using the performance index of break-even time (BET). The NV-SRAM cell is based on spin-transistor architecture using ordinary metal–oxide–semiconductor field-effect transistors (MOSFETs) and spin-transfer-torque magnetic tunnel junctions (STT-MTJs), whose circuit representation of spin-transistor is referred to as a pseudo-spin-MOSFET (PS-MOSFET). The cell is configured with a standard six-transistor SRAM cell and two PS-MOSFETs. The NV-SRAM cell basically has a short BET of submicroseconds. Although the write (store) operation to the STT-MTJs causes an increase in the BET, it can be successfully reduced by the proposed power-aware bias-control for the PS-MOSFETs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call