Abstract
Silicon Power MOSFETs, with more than thirty years of development, are widely accepted and applied in power converters. Gallium Nitride (GaN) power devices are commercially available in recent years [1], but the device performance and application have not been fully developed. In this paper, GaN devices are compared with state-of-art Si devices to evaluate the device impact on soft-switching DC-DC converters, like LLC resonant converter. The analytical approach of device selection and comparison are conducted and loss related device parameters are derived. Total device losses are compared between Si and GaN based on these parameters. GaN shows less loss compared with Si, yielding approximately a 20% reduction of total device loss. Two 300 W, 500 kHz, 48 V-12 V GaN-based and Si-based converter prototypes are built and tested. Since the body diode forward voltage drop of GaN device is high, the dead time is adjusted to minimize the body diode conduction period. The peak efficiency of the GaN-based converter is 97.5%, and the full load efficiency is 96.1%, which is around 0.3% higher than the Si-based converter at full load. The test results shows that, although GaN device has lower loss, the improvement of converter efficiency is not much. The reason is that the transformer loss accounts for more than 60% of total loss. Therefore, a transformer which fits the GaN device characteristic need to be further investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.