Abstract

AbstractPrediction of the characteristics of turbulent flow with streamline curvature is of great importance in engineering applications. In this paper, a curvature-corrected filter-based turbulent model is suggested by applying the Spalart-Shur correction term. This new version of the model (FBM-CC) has been tested and verified through two canonical benchmarks with strong streamline curvature: the flow in a two-dimensional U-duct and the free shear flow past NACA0012 airfoil with a round tip. Predictions of the FBM-CC model are compared with available experimental data and the corresponding results of the original FBM model. The numerical results show that the FBM-CC model significantly improves the sensitivity to the effect of streamline curvature and the numerical calculation accuracy, in relatively good agreement with the experimental data, which suggests that this proposed model may be employed to simulate the turbulent curved flow in engineering applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.