Abstract

Elevated groundwater levels drive slope instability through decreased effective stresses and frictional strength. Consequently, landslide mitigation often relies on a variety of stabilizing techniques, often including dewatering and drainage as a primary control on stability. One of the most effective dewatering techniques for landslides are horizontal drain systems, which consist of arrays of perforated pipes drilled into hillslopes for gravity-driven removal of groundwater. One of the few economical solutions for large-magnitude, groundwater-driven landslides, horizontal drain arrays facilitate groundwater drawdown through gravity-driven flow, consequently increasing effective stress and slope stability within its domain of influence. However, design of horizontal drain systems remain largely observational and there is limited insight towards the transient performance of these drainage systems. This study aims to explore relevant theoretical design criteria for horizontal drain systems and their relative importance as related to drawdown mechanism and magnitude, as well as slope stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call