Abstract

Nonspecific reactive chemicals often interfere with the interpretation of high-throughput assay results because of their promiscuity and/or cytotoxicity. Using a high-throughput assay to identify such compounds is necessary to efficiently rule out potential assay artifacts. The MSTI, (E)-2-(4-mercaptostyryl)-1,3,3-trimethyl-3H-indol-1-ium, assay uses a thiol-containing fluorescent probe to screen for electrophile reactivity and could potentially be used to determine nonspecific reactive compounds. The Tox21 10K compound library was previously screened against a panel of ∼80 cell-based and biochemical assays, including the biochemical MSTI assay. In this study, we compared the MSTI assay activity of the Tox21 10K compounds with their promiscuity and cytotoxicity as reflected by their activities across the Tox21 assay panel to determine: (1) if this assay is predictive of a compound's promiscuity and cytotoxicity and (2) what chemical features create inconsistent results between the MSTI assay activity and promiscuity/cytotoxicity (false negatives and false positives). We found that the MSTI assay can predict a chemical's promiscuity/cytotoxicity with a 0.55 sensitivity and 0.97 specificity. Out of 3,407 unique compounds evaluated, we identified 92 false positive and 227 false negative results. Several structural features such as carboxamides and alkyl halides were found to be apparent in 53% (p = 2.4 × 10-07) and 19% (p = 4.3 × 10-06) of the false positives and negatives, respectively. The results of this analysis will help identify the potential challenges of this high-throughput assay and allow researchers to identify if a compound will be cytotoxic or promiscuous in an efficient manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.