Abstract

This paper discusses the role of supplementary cementitious materials (SCM) in reducing damage caused by calcium oxychloride formation. Calcium oxychloride is a destructive product of a reaction between calcium hydroxide (CH) that exists in a cementitious matrix and CaCl2 that can enter the pores of the matrix when it is used as a deicing salt. Paste samples were prepared where a percentage of ordinary portland cement was replaced with various types of SCM (including fly ash, slag, and silica fume). This paper examined the amount of calcium oxychloride that formed using low-temperature differential scanning calorimetry, and damage development detected using acoustic emission. Thermogravimetric analysis was also performed to determine the relationship between the amount of CH in cementitious materials and the amount of calcium oxychloride formation. The results show that the use of SCM is effective in reducing the calcium oxychloride formation and resulting damage when cementitious materials are exposed to various compositions of solution containing CaCl2. The explanation of the benefit of using SCM is that it can reduce the calcium oxychloride formation due to a reduction in the amount of CH in the cementitious materials through pozzolanic reaction and dilution of cement. As a result, cementitious materials with SCM exposed to CaCl2 may experience less damage and have a longer service life.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call