Abstract

Oral bioavailability is a pharmacokinetic property that plays an important role in drug discovery. Recently developed computational models involve the use of molecular descriptors, fingerprints, and conventional machine-learning models. However, determining the type of molecular descriptors requires domain expert knowledge and time for feature selection. With the emergence of the graph neural network (GNN), models can be trained to automatically extract features that they deem important. In this article, we exploited the automatic feature selection of GNN to predict oral bioavailability. To enhance the prediction performance of GNN, we utilized transfer learning by pre-training a model to predict solubility and obtained a final average accuracy of 0.797, an F1 score of 0.840, and an AUC-ROC of 0.867, which outperformed previous studies on predicting oral bioavailability with the same test data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.