Abstract
Pollution from mineral exploitation is an important risk factor affecting surface water environment in mineral regions. It is urgent to construct a simple and accurate model to assess the surface water pollution risk from mineral exploitation in the regional scale. Thus, taking a mining province namely Liaoning in northeastern China as the study area, we proposed a framework to simulate the transport process of pollutants from mineral exploitation points to the surrounding surface water based on the "source-sink" theory. In our framework, we adopted the regional growth method (RGM) to extract the potential polluted water area as the certain "sink"considering the influence of the topography, and then applied Minimum Cumulative Resistance (MCR) model to assess the surface water pollution risk from mineral exploitation. The results revealed that: (1) 9.5% of the water areas were located at the potential impact area of MEPs. (2) The total value of resistance surface in Liaoningis relatively low, and gradually decreased from west to east. (3) MEPs in Liaoning had a high risk and seriously threatened the surface water environment, among 2125 MEPs, 733 MEPs (32.99%) were assessed as extremely high risk level, and about 35% of the MEPs were distributed within 10KM buffer zone of surface water. (4) Water pollution risk of MEPs in Dalian, Tieling, Fuxin and Dandong need to be emphasized. (5) Compared to previous studies, we considered the topographical influence before applying MCR model directly, so the results of water pollution risk were more reliable. This study provides a methodological support and scientific reference for the water environment protection and regional sustainable development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.