Abstract
This paper focuses on the suitability of urban expansion in mountain areas against the background of accelerated urban development. Urbanization is accompanied by conflict and intense transformations of various landscapes, and is accompanied by social, economic, and ecological impacts. Evaluating the suitability of urban expansion (UE) and determining an appropriate scale is vital to solving urban environmental issues and realizing sustainable urban development. In mountain areas, the natural and social environments are different from those in the plains; the former is characterized by fragile ecology and proneness to geological disasters. Therefore, when evaluating the expansion of a mountain city, more factors need to be considered. Moreover, we need to follow the principle of harmony between nature and society according to the characteristics of mountain cities. Thus, when we evaluate the expansion of a mountain city, the key procedure is to establish a scientific evaluation system and explore the relationship between each evaluation factor and the urban expansion process. Taking Leshan (LS), China—a typical mountain city in the upper Yangtze River which has undergone rapid growth—as a case study, the logic minimum cumulative resistance (LMCR) model was applied to evaluate the suitability of UE and to simulate its direction and scale. The results revealed that: An evaluation system of resistance factors (ESRFs) was established according to the principle of natural and social harmony; the logic resistance surface (LRS) scientifically integrated multiple resistance factors based on the ESRF and a logic regression analysis. LRS objectively and effectively reflected the contribution and impact of each resistance factor to urban expansion. We found that landscape, geological hazards and GDP have had a great impact on urban expansion in LS. The expansion space of the mountain city is limited; the area of suitable expansion is only 23.5%, while the area which is unsuitable for expansion is 39.3%. In addition, it was found that setting up ecological barriers is an effective way to control unreasonable urban expansion in mountain cities. There is an obvious scale (grid size) effect in the evaluation of urban expansion in mountain cities; an evaluation of the suitable scale yielded the result of 90 m × 90 m. On this scale, taking the central district as the center, the urban expansion process will extend to the neighboring towns of Mianzhu, Suji, Juzi and Mouzi. Urban expansion should be controlled in terms of scale, especially in mountain cities. The most suitable urban size of LS is 132 km2.This would allow for high connectivity of urban-rural areas with the occupation of relatively few green spaces.
Highlights
This paper focuses on the suitability of urban expansion in mountain areas against the background of accelerated urban development
Our analysis showed that spatial dynamic models (LCAM, GRNN, and SLEUTH) performed well in terms of solving the problem of the contribution degree of the driving force factors, which is known as the “weight of the factor”
We explored the relationship between the RFs and urban expansion (UE) by logic regression analysis and obtained the regression coefficients
Summary
This paper focuses on the suitability of urban expansion in mountain areas against the background of accelerated urban development. When evaluating the expansion of a mountain city, more factors need to be considered. Taking Leshan (LS), China—a typical mountain city in the upper Yangtze River which has undergone rapid growth—as a case study, the logic minimum cumulative resistance (LMCR) model was applied to evaluate the suitability of UE and to simulate its direction and scale. There is an obvious scale (grid size) effect in the evaluation of urban expansion in mountain cities; an evaluation of the suitable scale yielded the result of 90 m × 90 m. There are still some limitations and problems for this model in the evaluation of urban expansion in mountain areas. (1) What were the impact factors related to urban expansion in LS? (2) How suitable was the urban expansion? (3) What was the appropriate direction for UE and how were the urban rural areas connected under a specific scale scenario?
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.