Abstract

BackgroundThe HUGO Pan-Asian SNP Consortium (PASNP) has generated a genetic resource of almost 55,000 autosomal single nucleotide polymorphisms (SNPs) across more than 1,800 individuals from 73 urban and indigenous populations in Asia. This has offered valuable insights into the correlation between the genetic ancestry of these populations with major linguistic systems and geography. Here, we attempt to understand whether adaptation to local climate, diet and environment partly explains the genetic variation present in these populations by investigating the genomic signatures of positive selection.ResultsTo evaluate the impact to the selection analyses due to the considerably lower SNP density as compared to other population genetics resources such as the International HapMap Project (HapMap) or the Singapore Genome Variation Project, we evaluated the extent of haplotype phasing switch errors and the consistency of selection signals from three haplotype-based approaches (iHS, XP-EHH, haploPS) when the HapMap data is thinned to a similar density as PASNP. We subsequently applied haploPS to detect and characterize positive selection in the PASNP populations, identifying 59 genomics regions that were selected in at least one PASNP populations. A cluster analysis on the basis of these 59 signals showed that indigenous populations such as the Negrito from Malaysia and Philippines, the China Hmong, and the Taiwan Ami and Atayal shared more of these signals. We also reported evidence of a positive selection signal encompassing the beta globin gene in the Taiwan Ami and Atayal that was distinct from the signal in the HapMap Africans, suggesting the possibility of convergent evolution at this locus due to malarial selection.ConclusionsWe established that the lower SNP content of the PASNP data conferred weaker ability to detect signatures of positive selection, but the availability of the new approach haploPS retained modest power. Out of all the populations in PASNP, we identified only 59 signals, suggesting a strong need for high-density population-level genotyping data or sequencing data in order to achieve a comprehensive survey of positive selection in Asian populations.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-332) contains supplementary material, which is available to authorized users.

Highlights

  • The HUGO Pan-Asian SNP Consortium (PASNP) has generated a genetic resource of almost 55,000 autosomal single nucleotide polymorphisms (SNPs) across more than 1,800 individuals from 73 urban and indigenous populations in Asia

  • Population structure analyses The PASNP dataset consists of genotypes at 54,974 autosomal SNPs for 1,928 individuals from 73 Asian and two non-Asian HapMap populations (CEU, YRI; Figure 1A), and we followed the definitions of the populations as introduced by PASNP ([25], Additional file 1: Table S1)

  • Principal component analyses (PCA) of all 75 populations indicated that the Asian populations were genetically distinct from the Africans, and populations of South Asian ancestry were closer to the Europeans than other Asian populations (Figure 1B)

Read more

Summary

Introduction

The HUGO Pan-Asian SNP Consortium (PASNP) has generated a genetic resource of almost 55,000 autosomal single nucleotide polymorphisms (SNPs) across more than 1,800 individuals from 73 urban and indigenous populations in Asia. The distinct languages in Asia have limited the extent of historical interactions between different population groups, leading to a greater degree of genetic homogeneity between populations sharing the same linguistic system while extending the genetic differences between populations with different linguistic systems. This situation is similar to that present in the Africa continent [1]. The diverse geographical and climatic conditions have directly influenced the rate of population growth and movement, as well as urbanization and agricultural land use in different parts of Asia, where differential sanitation and health systems have exerted profound influence on the burdens of diseases in different parts of Asia, those of vector-borne infectious diseases such as malaria and dengue [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.