Abstract

Introduction: Our current understanding of hematological cancers and methods for their treatment are largely derived from investigations of the hematopoietic system. However, studies in murine animal models now indicate a significant contribution from non-hematopoietic bone marrow mesenchymal stem/stromal cells (BM-MSCs) in the initiation and propagation of hematopoietic defects that resemble early leukemia (myelodysplastic syndromes). To study this possibility in human leukemia, we have established a repository of MDS patient derived MSCs and early studies have identified a group of these MSCs that can cause aberrant hematopoietic differentiation of human BM CD34+ in in vitro and in vivo systems. Future work will be focused on vigorous MSC characterization to elucidate mechanisms responsible the stroma contribution towards cancer formation.Methods: BM MDS samples (n=20) were obtained from the Department of Hematology repository at Singapore General Hospital. Osteogeneic and adipogeneic differentiation as well as proliferation capacity, immunophenotyping and the ability of MDS-MSCs to support hematopoiesis in co-cultures were tested. Gene expression and methylation studies were performed on MDS-MSCs to investigate the degree of correlation with their ability to support hematopoiesis.Results: Of the 20 MDS-MSC samples collected, 11 were classified as lower-risk MDS patients (< 5% marrow blasts) and 9 were higher-risk MDS patients (> 5% marrow blasts). Compared to healthy MSCs, cells from all MDS patients present non-fibroblast morphology and the early colonies also appear more disorganized. All MDS-MSCs express uniform levels of expression of known MSC markers such as CD73, CD90, CD105, CD166 and CD140B and are negative for CD45 and CD34. Expression of CD44 (n= 20; range 26% - 90%) and CD106 (n=20; range: 10% - 26.7%) was varied across MDS samples. MDS-MSCs have significantly reduced proliferative capacities (p=0.021) as well as reduced osteogeneic differentiation potentials (p<0.0001) compared to healthy MSCs. The total numbers of HSPCs or CD34+ cell fraction was reduced in MDS co-cultures compared to healthy co-cultures (3.13 x106vs4.31x106; n=8; p<0.05) and significantly reduced compared to expansion without MSCs (3.5x105; n=3; p=0.0003 and p=0.0021). Co-culture of higher-risk MDS-MSCs showed a significant reduction in CFU-GM (16.6 ± 1.3; n=7; p<0.05) and CFU-GEMM (6.4 ± 0.4; n=7; p<0.05) lineages in comparison to healthy co-cultures (CFU-GM: 39.0 ± 1.0 and CFU-GEMM: 12.0 ± 1.0) respectively. However, these effects were not as evident in lower-risk MDS-MSC co-cultures. Following transplantation of co-cultured healthy HSPCs into NSG mice, we observed reduced HSPC engraftment in the higher-risk MDS experimental group compared to healthy controls at 8 weeks. qPCR analysis of these MDS-MSCs showed a consistent attenuation of gene expression associated with hematopoietic support (CXCL12, SCF, TPO, etc).Conclusion: We show that MSCs derived from all MDS patients have phenotypic abnormalities but not all may have the potential support cancer development. In the identified higher-risk MDS-MSC group that impairs healthy hematopoiesis, we observed a more consistent attenuation of gene expression associated with hematopoiesis. We are further investigating the methylome and exosome-mediated transfer of RNA (from MSCs to HSPCs) as possible mechanisms for our observations. DisclosuresNo relevant conflicts of interest to declare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.