Abstract

BackgroundInsecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Fungal entomopathogens formulated as biopesticides have received much attention and have shown considerable potential. This research has necessarily focused on relatively few fungal isolates in order to ‘prove concept’. Further, most attention has been paid to examining fungal virulence (lethality) and not the other properties of fungal infection that might also contribute to reducing transmission potential. Here, a range of fungal isolates were screened to examine variation in virulence and how this relates to additional pre-lethal reductions in feeding propensity.MethodsThe Asian malaria vector, Anopheles stephensi was exposed to 17 different isolates of entomopathogenic fungi belonging to species of Beauveria bassiana, Metarhizium anisopliae, Metarhizium acridum and Isaria farinosus. Each isolate was applied to a test substrate at a standard dose rate of 1×109 spores ml-1 and the mosquitoes exposed for six hours. Subsequently the insects were removed to mesh cages where survival was monitored over the next 14 days. During this incubation period the mosquitoes’ propensity to feed was assayed for each isolate by offering a feeding stimulant at the side of the cage and recording the number probing.Results and conclusionsFungal isolates showed a range of virulence to A. stephensi with some causing >80% mortality within 7 days, while others caused little increase in mortality relative to controls over the study period. Similarly, some isolates had a large impact on feeding propensity, causing >50% pre-lethal reductions in feeding rate, whereas other isolates had very little impact. There was clear correlation between fungal virulence and feeding reduction with virulence explaining nearly 70% of the variation in feeding reduction. However, there were some isolates where either feeding decline was not associated with high virulence, or virulence did not automatically prompt large declines in feeding. These results are discussed in the context of choosing optimum fungal isolates for biopesticide development.

Highlights

  • Insecticide resistance is seriously undermining efforts to eliminate malaria

  • A number of recent reports suggest that the continued efficacy of malaria and mosquito vector control tools is threatened by drug and insecticide resistance [1,2,3,4,5,6]

  • This study evaluated the virulence of 17 isolates of the entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, M. acridum and Isaria farinosus against the Asian vector mosquito Anopheles stephensi

Read more

Summary

Introduction

Insecticide resistance is seriously undermining efforts to eliminate malaria. In response, research on alternatives to the use of chemical insecticides against adult mosquito vectors has been increasing. Recent work has shown that fungal shelf-life and post application persistence (important criteria for the active ingredient of any IRS product) on some surfaces can be comparable to chemical insecticides [Authors’ submitted manuscript]. These advances are encouraging but have not been without criticism [25], in part because fungi induce relatively slow mortality (often 7–14 days to reach >90% mortality) and this does not fit with the fast acting chemical insecticide target product profiles prescribed by the World Health Organization Pesticide Evaluation Scheme (WHOPES) [26]. As indicated above, fungal infection can affect mosquito life history in multiple ways and virulence (speed of kill) is only one measure of pathogen impact

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.