Abstract

Recognizing the growing trend of the urban population and the undeniable fact of global and regional climate change, it becomes increasingly important to explore how we can improve the livability of our cities not only in the distant future but also in the next few years. A critical aspect of this endeavor involves studying how we can effectively mitigate human heat load in urban areas. In our research, in the case of a medium-sized city (Szeged, Hungary), we examined the effect of surface modifications caused by vegetation on human thermal perception during the day and night of two heatwave days. To achieve this, we used the MUKLIMO_3 micro-scale climate model to simulate the thermal climate of Szeged, while the thermal load was assessed with the perceived temperature calculated by the Klima-Michel model. Our analysis also relied on the local climate zone (LCZ) system to describe the original land cover and the additional urban green spaces in the study area. We scrutinized the effects of added vegetation of different types and densities, as well as the presence of protective forests surrounding the city. Our findings revealed that the effect of the added vegetation can only be detected on the modified surfaces and in their immediate vicinity. Notably, dense urban greenery resulted in up to a 2–3 °C reduction in perceived temperature in certain areas during the daytime, highlighting the profound impact of targeted green space development. In addition, it is crucial to consider the airflow-blocking effect of woody vegetation, which can increase thermal load by 1–3 °C in the areas located in a downwind direction. Therefore, the changing regional climatic conditions (e.g., wind direction) and the development of the right type and location of urban green areas deserve special attention during modern urban planning processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call