Abstract

Nanoemulsion adjuvant vaccines have attracted extensive attention because of their small particle size, high thermal stability, and ability to induce validly immune responses. However, establishing a series of comprehensive protocols to evaluate the immune response of a novel nanoemulsion adjuvant vaccine is vital. Therefore, this article features a rigorous procedure to determine the physicochemical characteristics of a vaccine (by transmission electron microscopy [TEM], atomic force microscopy [AFM], and dynamic light scattering [DLS]), the stability of the vaccine antigen and system (by a high-speed centrifuge test, a thermodynamic stability test, SDS-PAGE, and western blot), and the specific immune response (IgG1, IgG2a, and IgG2b). Using this approach, researchers can evaluate accuratelythe protective effect of a novel nanoemulsion adjuvant vaccine in a lethal MRSA252 mouse model. With these protocols, the most promising nanoemulsion vaccine adjuvant in terms of effective adjuvant potential can be identified. In addition, the methods can help optimize novel vaccines for future development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.