Abstract
In the relevant literature, there is no study dealing with the financial credibility of third-party logistic providers with the help of decision-making frames. Further, there are no criteria to evaluate the third-party logistics providers' creditworthiness in practice, and decision-makers in the banks consider their judgments and experiences to assess the demand of the logistics firms. This study proposes a multi-criteria group decision-making framework through a dual hesitant linguistic q-rung orthopair fuzzy (DHLq-ROF) set to manage uncertainties more effectively and make a theoretical contribution to the academic literature. For ranking, the score function and accuracy function are defined. Additionally, some novel operational laws based on Frank t-norms and t-conorms are defined for DHLq-ROF numbers. A wide range of generalized aggregation operators, such as DHLq-ROF Frank weighted averaging, DHLq-ROF Frank weighted geometric, DHLq-ROF Frank generalized weighted averaging, and DHLq-ROF Frank generalized weighted geometric operators, are also investigated. Beyond that, several prominent characteristics of the proposed operators are studied. It is applied to a financial credibility problem for a multinational organization to demonstrate the introduced model's applicability. Considering the results obtained regarding the importance of the criteria, the most crucial criterion is market indebtedness, followed by fleet vehicle structure and current rate criteria, respectively. The results indicate that UPS, Kuhne & Nagel and DHL Deutsche Post are the best third-party logistic providers. The sensitivity analysis shows that the framework possesses favourable flexibility and effectiveness. Thanks to the framework's ability to produce practical solutions to challenging decision-making problems, it can be reliably preferred in engineering and other fields.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.