Abstract

Hydrodynamic slug fl ow is the commonest fl ow regime observed in high viscosity liquid–gas horizontal pipelines over a wide range of different fl ow conditions. Hydrodynamic slugging tends to generate large vibrations that may impose structural instability or even damage oil production pipelines. For that reason, there is a need to investigate high viscosity slug fl ow regime to understand its complex characteristics. This is pertinent when considering that existing slug fl ow models used in the petroleum industry to design production pipelines are not suitable for predicting the behaviour of high viscosity oil–gas fl ow. In this study, the effects of liquid viscosity and fl ow variables on slug fl ow regime were investigated experimentally through the analysis of two key parameters—slug frequency and slug body liquid holdup, both measured with a gamma densitometer. Comparison of the measured slug parameters to existing correlations revealed that slug body liquid holdup correlations were in close agreement with high viscosity experimental data. However, none of the existing slug frequency correlations used was able to produce accurate predictions. A new empirical correlation for slug frequency was proposed. Compared with existing correlations, the newly proposed correlation performed much better in predicting slug frequency of high viscosity liquid–gas fl ows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.