Abstract

Controlling drainage during the growth stage is one of the means to provide suitable water and fertilizer conditions for crops, alleviate environmental pollution, and increase crop yield. Therefore, in this study, we studied three drainage treatments: free drainage (FD) and growth-stage subsurface controlled drainage (CD) at depths of 40 cm (CWT1) and 70 cm (CWT2). We used the HYDRUS-2D model to simulate the dynamic changes of NO3-N in the 0–100 cm soil layer as well as NO3-N uptake by crops, leaching after irrigation and fertilization, and loss through subsurface pipes in 2020 (model calibration period) and 2021 (model validation period). The degree of agreement between the simulated and measured values was high, indicating a high simulation accuracy. CD increased the soil NO3-N content and crop NO3-N uptake, and decreased NO3-N leaching and loss. We observed significant differences in the soil NO3-N content after irrigation at the budding stage of oilseed sunflower between CD and FD, with the largest difference seen for the 0–40 cm soil layer. CD increased crop yield, and the average oilseed sunflower yield of the CWT1 and CWT2 treatments increased by 4.52% and 3.04% relative to the FD treatment (p < 0.05). CD also enhanced nitrogen use efficiency. In moderately salinized soil, CD at 40 cm (CWT1) reduced the nutrient difference in vertical and horizontal directions while retaining water and fertilizer. CWT1 stabilized the groundwater depth, reduced the hydraulic gradient of groundwater runoff, and decreased the drainage flow rate. The NO3-N leaching and loss dropped, which promoted crop nitrogen uptake and utilization, improved nitrogen use efficiency, reduced nitrogen loss, and had a positive effect on protecting the soil and water environment. The results demonstrate that CD is a suitable drainage method for the experimental area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call