Abstract
In this study, considering the enhancement potential of microalgae and MBRs for wastewater treatment, the microalgae Haematococcus pluvialis, which is a freshwater species of Chlorophyta with a high capacity to synthesize astaxanthin, was bioaugmented into an aerobic MBR to investigate its potential on treatment of antibiotics in wastewater, reducing membrane biofouling, and impact on the microbial community structure. For this purpose, two control MBRs, with and without antibiotics, alongside an MBR bioaugmented with H. pluvialis, were set under mesophilic conditions, using inoculum from a local wastewater treatment facility and synthetic wastewater. The common antibiotics sulfamethoxazole (SMX), tetracycline (TET) and erythromycin (ERY) were selected to investigate removal efficiencies by Haematococcus pluvialis in an MBR for this study. In the bioaugmented reactor, membrane biofouling was delayed by 33% and chemical oxygen demand removal increased by 6%. The highest removal of antibiotics was observed for TET with a 20% enhancement from 69.75% (C2) to 89.73% (HP). The results also suggested that H. pluvialis reconstructed indigenous and biofilm microbial communities in MBR. The biodegradation network was modified and the relative abundance of Proteobacteria increased, while Firmicutes and Bacteroidetes were significantly reduced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.