Abstract

Membrane bioreactors are powerful systems for wastewater treatment and the removal of toxic compounds. However, membrane biofouling stands in the way of their widespread usage. In this study, the saprophytic fungus Trichocladium canadense was used as the bioaugmentor in an anaerobic membrane bioreactor (AnMBR) and its impact on membrane biofouling, biogas production, the microbial communities of the reactor and removal of the common antibiotics erythromycin (ERY), sulfamethoxazole (SMX) and tetracycline (TET) from synthetic wastewater was investigated. The results indicated that through bioaugmentation with 20% T. canadense, membrane biofouling was slowed by 25%, the chemical oxygen demand removal increased by 16% and a higher efficiency removal of ERY and SMX was achieved. The presence of T. canadense significantly increased the abundance and diversity of the biofilm archaeal community and the bacterial phylum Firmicutes, a known bio-foulant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.