Abstract

Bioresorbable stents is going to become the future modality for the treatment of coronary artery disease (CAD). However, the main limitation of the polymeric stent is its poor mechanical properties. For the proper functioning of a stent in the artery; it is required to enhance the radial stiffness of the polymeric stent. Polymeric tube manufacturing is the first and most important step in the stent manufacturing process. Usually, post processing operation which enhances the mechanical properties such as annealing, blowing and die drawing near glass transition are used after tube extrusion. In this study, along with conventional tube extrusion process (SE), a single step biaxial expansion method (BAE) was employed during the tube extrusion. The effect of manufacturing method on the radial compressive strength of the extruded tubes is thereby evaluated. For further determining the tubes radial resistive force, parallel plate crush testing as per ISO 25539-2 was performed and it is observed that tubes extruded by BAE method have better performance during crush testing as compared to the SE tubes of the same material. SEM was used for observing the cross-sectional morphology of the Cryo-fractured surface of fabricated bioresorbable tubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.