Abstract

Abstract Increasing population, food demands and climatic stressors pose an imminent threat to groundwater sustainability in regional aquifer systems globally. Limited availability of surface water and erratic/uncertain rainfall necessitates preservation of groundwater resources, which form reliable fresh water reserves in most of the arid regions. Bhuj Sandstone aquifer is one such fresh groundwater systems in Western India catering the domestic/irrigational needs for over 2 million population. Rapid groundwater depletion in this area warranted a mandatory conservation of groundwater resources for future sustainability. Nuclear techniques using 3H and 14C provide estimates of groundwater age that help in planning sustainable groundwater management. In this study, sustainability of deep groundwater was assessed using environmental radioactive isotopes (3H, 14C). Results indicate that 14C activity of the groundwater samples varies from 26 to 73.6 pMC (percent modern carbon). Considering the various biases and uncertainties present, multiple correction models were applied to obtain representative groundwater ages by incorporating stable (13C) isotope and hydrogeochemical data. The corrected and representative ages are found to range from 5.8 to 8.6 ka BP (thousand years before present). From the study it can be inferred that central Bhuj aquifer hosts paleo-groundwater while the western part is recently recharged. Therefore, over-exploitation of deep groundwater in central Bhuj aquifer may further lower the water levels and this would have long-term impact on the socio-economic development of Kutch region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call