Abstract

Hard brittle materials (e.g. glasses and ceramics) increasingly appeal to general interests because of their excellent physical, mechanical and chemical properties such as super hardness and strength at extreme temperature and chemical stability. The precision manufacturing of these materials is primarily achieved by grinding and polishing, which generally employs abrasives to wear the materials. With this manufacturing technology, the materials are removed due principally to the fracture of brittle materials, which will leave a cracked layer on the surface of manufactured components, namely subsurface damage (SSD). The subsurface damage affects the strength, performance and lifetime of components. As a result, investigation into the subsurface damage is needed. A host of characterizing techniques have been developed during the past several decades. These techniques based on different mechanisms provide researchers with invaluable information on the subsurface damage in various materials. In this article the typical SSD evaluation techniques are reviewed, which are regularly used in optical workshops or laboratories.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.