Abstract

The external interference and vibration can seriously affect the machining errors in brittle materials grinding process. This paper proposes a new model to analyze the relationship between surface roughness (SR) and subsurface damage (SSD) depth on the basis of grinding kinematics analysis and indentation fracture mechanics of brittle materials taking the wheel spindle vibration into account. The basic equations, for example, equations of grain trajectory and penetration depth are derived in new forms. Based on the basic equations above, the existing SR and SSD formulae are modified for further study. The effects of grinding and vibration parameters on SR and SSD are respectively analyzed in detail. Results show that both SR and SSD increase with the increase of table speed and vibration amplitude resulting in bad surface and subsurface quality. On the other hand, both the increasing grinding speed and decreasing vibration frequency can improve the quality of ground surface and subsurface with small SR and SSD. In addition, the increase of initial grinding depth and vibration initial phase increase the depth of SSD but have little effect on SR. The penetration depth and distance between grain's tip and finished surface are the two main factors considered to cause the different effect laws on SR and SSD among these parameters. Experiment is carried out to validate the rationality of proposed model. The effect trends of various grinding parameters on SR obtained by our model consist with measured experimental data. The typical subsurface crack system is clearly revealed through the experimental observation on SSD using SEM. Finally, the relationship between the two is fitted utilizing quadratic polynomial. Results show that the SSD depth is nonlinear monotone increasing with SR and the fitting accuracy is more or less affected by both grinding and vibration parameters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call