Abstract
Aerospace composite components require effective monitoring techniques to detect possible internal damage from impact events. To ensure reliable impact identification, sensor measurements can provide valuable information about impact energy and identify potential issues that may require further investigation. However, selecting the most appropriate sensor technology to measure impact force and energy is a challenge. In this article, a systematic and structured approach is presented to compare the expected performance of sensors and their metrological parameters in terms of their ability for impact identification in aerospace composites. The proposed methodology is demonstrated using an application example where fibre Bragg grating (FBG) are compared with piezoelectric (PZT) sensors through comprehensive tests. These tests include the correlation test, the sensitivity test, and the factor test. The correlation test showed a high agreement between FBG and PZT sensors in the time and frequency domain. The sensitivity test indicated a significant correlation between the signal features and the impact energy levels in the energy profiling diagrams, revealing nonlinearities and energy losses indicative of damage. Furthermore, these results emphasise the superior resolution of the FBG sensors and the comparable repeatability of the two sensor types. Finally, the factor test showed that FBG sensors are sensitive to different angles of incidence, while PZT sensors have a more stable directivity. Further analysis also showed that the signal strength of both sensor types decreases with increasing distance from the impact source. Overall, the proposed approach enables a thorough evaluation of the capabilities and limitations of both sensor types. Consequently, it provides information to make an informed decision on the most suitable sensor for impact monitoring systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have