Abstract

Abstract Root-zone soil moisture (RZSM) is an important variable in land–atmosphere interactions, notably affecting the global climate system. Contrary to satellite-based acquisition of surface soil moisture, RZSM is generally obtained from model-based simulations. In this study, in situ observations from the Naqu and Pali networks that represent different climatic conditions over the Tibetan Plateau (TP) and a triple collocation (TC) method are used to evaluate model-based RZSM products, including Global Land Evaporation Amsterdam Model (GLEAM) (versions 3.5a and 3.5b), Global Land Data Assimilation System (GLDAS) (versions 2.1 and 2.2), and the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis (ERA5). The evaluation results based on in situ observations indicate that all products tend to overestimate but could generally capture the temporal variation, and ERA5 exhibits the best performance with the highest R (0.875) and the lowest unbiased RMSE (ubRMSE; 0.015 m3 m−3) against in situ observations in the Naqu network. In the TC analysis, similar results are obtained: ERA5 has the best performance with the highest TC-derived R (0.785) over the entire TP, followed by GLEAM v3.5a (0.746) and GLDAS-2.1 (0.682). Meanwhile, GLEAM v3.5a and GLDAS-2.1 outperform GLEAM v3.5b and GLDAS-2.2 over the entire TP, respectively. Besides, possible error causes in evaluating these RZSM products are summarized, and the effectiveness of TC method is also evaluated with two dense networks, finding that TC method is reliable since TC-derived R is close to ground-derived R, with only 6.85% mean relative differences. These results using both in situ observations and TC method may provide a new perspective for the soil moisture product developers to further enhance the accuracy of model-based RZSM over the TP. Significance Statement The purpose of this study is to better understand the quality and applicability of GLEAM, GLDAS, and ERA5 RZSM products over the TP using both in situ observations and the triple collocation (TC) method, making it better applied to climate and hydrological research. This study provides four standard statistical metrics evaluation based on in situ observations, as well as the reliable metric, that is, correlation coefficient (R) derived from TC method, and highlights that TC-based evaluation could supplement the ground-based validation, especially over the data-scarce TP region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.