Abstract
Pesticides are widely used around the home and in agriculture to control unwanted populations; however, they may also be toxic to non-targeted organisms. Because traditional methods of assessing pesticide toxicity are expensive, lengthy, and ethically questionable, we evaluated pesticide toxicities using stimuli-responses in liposomes. Pesticide ecotoxicity was evaluated using 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) liposomes. Changes in membrane permeability were measured using calcein leakage assays as stimuli-responses in the presence of six pesticides (Chlorpyrifos-methyl, fluometuron, imidacloprid, pirimicarb, pyrethrin, and quizalofop-ethyl), for which the calcein release rate was analyzed using a first-order kinetics equation. The calcein release rate constants of the DPPC liposomes were used to classify the pesticides into lower and higher toxicity groups. In each group, the initial calcein release rate from the DPPC/DOPC liposomes mixed with 33 mol% DOPC correlated well with previously reported pesticide toxicities. The DOPC liposomes underwent lateral phase separation in a different manner between the two toxicity groups. Pesticides with lower toxicities were partitioned in the DPPC-enriched phase, disrupting the gel phase order through their hydrophobicity, whereas pesticides with higher toxicity were partitioned in the DOPC-enriched phase and stabilizing the liquid disordered phase owing to their hydrophobicity and molecular shape. The toxicity of each pesticide was well represented by an equation that combined the calcein release rate constant of the DPPC liposomes and the initial calcein release rate of the 33 mol% DOPC mixed liposomes. The findings indicate that stimuli-response assays using liposomes can be used to complement traditional ecotoxicity assessments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.