Abstract

Introduction: The purpose of this study was to determine whether placing screws farther from the articular cortex could achieve comparable levels of purchase to the more deeply buried configurations currently recommended (between 5 and 8 mm from the articular surface), thus lowering the risk of screw cutout. Methods: Locking screws were inserted into synthetic composite models of osteoporotic bone at depths corresponding to 8, 11 and 14 mm from the articular surface of an anatomic reference model and subjected to mechanical testing. This protocol was then recapitulated in 24 paired cadaveric humeral specimens to assess the forces required to dislodge screws at depths of 8 and 14 mm from the articular surfaces. Results: The average pullout strengths of screws positioned 8, 11 and 14 mm from the articular surface in the synthetic bone composites were 145.64, 140.31 and 140.36 N respectively, demonstrating no significant difference. Pullout testing was performed with screw depths of 8 and 14 mm from the articular surfaces in 24 paired proximal humerus samples. The mean pullout strength of screws 8 and 14 mm from the articular surface were 23.92 and 21.79 N respectively (p=0.37). Conclusion: This study demonstrates no significant difference in locking screw purchase up to 14 mm of the articular margin. Increasing the periarticular distance of locking screws can help confer strength and stability to the implant, while simultaneously mitigating the risk of screw cutout. Clinical relevance: Biomechanical study comparing screw purchase of varying periarticular margins to decrease risk of screw cutout without sacrificing fixation.

Highlights

  • The purpose of this study was to determine whether placing screws farther from the articular cortex could achieve comparable levels of purchase to the more deeply buried configurations currently recommended, lowering the risk of screw cutout

  • The technique guide, which states that the locking screws should be inserted 5-8 mm from the articular surface to engage subchondral bone [12], was used as a reference to establish the periarticular distances tested in our study

  • We utilized a fourth generation composite proximal humerus (Sawbones), to establish the burial depth the 60 mm screws would be subjected to when inserted through the right proximal hole of the PHILOS locking plate which is referenced as section A [1,12], or screw hole # 1 [13]

Read more

Summary

Introduction

The purpose of this study was to determine whether placing screws farther from the articular cortex could achieve comparable levels of purchase to the more deeply buried configurations currently recommended (between 5 and 8 mm from the articular surface), lowering the risk of screw cutout. Most proximal humerus fractures can be managed non-operatively; complex and unstable fracture patterns frequently require surgical intervention [2,3]

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call