Abstract

In this study, the SiGe epilayers were created on silicon substrate by using ultra-high vacuum chemical vapor deposition (UHV/CVD) and followed by annealing procedures. The frictional behaviors of SiGe epilayers were subjected to nanoscratch techniques under a ramping load. Damage caused by scratching was examined by atomic force microscopy (AFM); the results showed that the pile-up phenomena were significant on both sides of the scratch in the case of SiGe epilayers, suggesting that the dynamic deformation behavior was dominated by cracking as ploughing occurred during scratching. In addition, the SiGe epilayers films with different annealed conditions exhibited the decrease in coefficient of friction (COF), indicating the higher shear resistance exist in annealed SiGe epilayers, which probably affect the film uniformity and device yield under IC process integration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call