Abstract
Purpose: We aimed to investigate the dose calculation accuracy of Mobius3D for small-field flattening-filter-free x-rays, mainly utilized for stereotactic body radiation therapy (SBRT). The accuracy of beam modeling and multileaf collimator (MLC) modeling in Mobius3D, significantly affecting the dose calculation is investigated. Methods: The commissioning procedures of Mobius3D were performed for unflattened 6 MV and 10 MV x-ray beams of the linear accelerator, including beam model adjustment and dosimetric leaf gap (DLG) optimization. An experimental study with artificial plans was conducted to evaluate the accuracy of small-field modeling. The dose calculation accuracy of Mobius3D was also evaluated for retrospective SBRT plans with multiple targets. Results: Both studies evaluated the dose calculation accuracy through comparisons with the measured data. Relatively large differences were observed for off-axis distances over 5 cm and for small fields less than 1 cm field size. For the study with artificial plans, the maximum absolute error of 9.96% for unflattened 6 MV and 9.07% for unflattened 10 MV was observed when the field size was 1 cm. For the study with patient plans, the mean gamma passing rate with 3%/3 mm gamma criterion was 63.6% for unflattened 6 MV and 82.6% for unflattened 10 MV. The maximum of the average dose difference was -19.9% for unflattened 6MV and -10.1% for unflattened 10MV. Conclusions: The dose calculation accuracy uncertainties of Mobius3D for small-field flattening-filter-free photon beams were observed. The study results indicated that the beam and MLC modeling of Mobius3D must be improved for use in SBRT pretreatment QA in clinical practice.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have