Abstract
In natural language understanding, a crucial goal is correctly interpreting open-textured phrases. In practice, disagreements over the meanings of open-textured phrases are often resolved through the generation and evaluation of interpretive arguments, arguments designed to support or attack a specific interpretation of an expression within a document. In this paper, we discuss some of our work towards the goal of automatically generating and evaluating interpretive arguments. We have curated a set of rules from the code of ethics of various professional organizations and a set of associated scenarios that are ambiguous with respect to some open-textured phrase within the rule. We collected and evaluated arguments from both human annotators and state-of-the-art generative language models in order to determine the relative quality and persuasiveness of both sets of arguments. Finally, we performed a Turing test-inspired study in order to assess whether human annotators can tell the difference between human arguments and machine-generated arguments. The results show that machine-generated arguments, when prompted a certain way, can be consistently rated as more convincing than human-generated arguments, and to the untrained eye, the machine-generated arguments can convincingly sound human-like.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.