Abstract

AbstractTraditional tomographic methods do not consider the uncertainties associated with near-surface velocities and static corrections and provide a deterministic solution to the estimation problem. However, these uncertainties significantly affect structural mapping and interpretation of seismic imaging results. On the other hand, Bayesian first-arrival tomography provides multiple near-surface models that fit observed traveltimes equally well and enable the study of potential solution distributions. We demonstrate this approach on a complex synthetic near-surface model, representative of arid environments, to quantify associated velocity and statics uncertainties. We evaluate two different parameterizations for subsurface velocities in the context of near-surface Bayesian tomography: Voronoi tessellation with natural neighbor interpolation and the more conventional Delaunay triangulation with linear interpolation. Our analysis shows that the Voronoi cell parameterization with natural neighbor interpolation is more appropriate for this problem. Finally, the new approach is applied to compare two alternative acquisition geometries comprising conventional surface receivers and surface receivers augmented with vertical receiver arrays. The results demonstrate that adding vertical receiver arrays to conventional surface receivers can significantly reduce the near-surface velocity uncertainty and thus increases the accuracy of the seismic imaging results. Furthermore, the study shows that Bayesian tomography can be used as a tool for evaluating different source and receiver geometries during the acquisition design stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call