Abstract

AbstractThe complexity of ice particles in the atmosphere makes it difficult to model microphysical growth processes accurately. In this study, we simulated a snowfall case over Northern China Plain using two different microphysics schemes, that is, Thompson and Morrison schemes, in the Advanced Research WRF (Weather Research and Forecasting) model. Both schemes are able to reproduce the event, albeit with a slightly weaker precipitation compared with the surface observation. However, the radar reflectivity factor in Morrison simulation is higher than the radar observation to ∼10 dBZ. Further analysis reveals that such stronger radar reflectivity in the Morrison simulation might be caused by larger collection efficiency, which would lead to more active self‐aggregation process in prediction of snow number concentration and then larger snow particle size. Sensitivity tests show that using an alternative formula of collection efficiency produces smaller radar reflectivity that is in better agreement with observations. This study highlights the accurate representation of self‐aggregation process and underscores the needs of further improvement of ice microphysics schemes for the better snowfall simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.