Abstract

The promotion of renewables improves energy security but degrades the electricity quality and grid stability. This paradox can be resolved by enlarging the capacity of pumped hydro storage. Although high-head hydropower resources have been exhausted, untapped low-head resources are ideal alternatives and are utilized for micro-pumped hydro storage. Instead of the miniaturized pump-turbine or pump as turbine, we apply a low-head reversible mixed-flow pump (RMFP), which can efficiently fulfil both storage and generation requirements in microgrids without complicated guide vanes. To enhance the efficiency of the RMFP in two reverse directions simultaneously, high-hydraulic dissipation zones associated with deformed flows and unreasonable structural parameters must be investigated. This study introduces entropy production theory into computational fluid dynamics numerical simulation to evaluate hydraulic dissipation under the rated discharge in both pump and turbine modes of the RMFP. Refined mesh and validation from the energy characteristics experiment demonstrate the accuracy of the numerical scheme. The head loss assessed by the entropy Production method is compared with the predictions of the pressure drop method, and its precision exceeds 7%. In pump mode, entropy production in the volute constitutes the largest proportion (43%), followed by that in the runner (35%). However, in turbine mode, the largest proportion of the total entropy is generated in the runner (45%), followed by that in the draft tube (33%). The dissipation in the runner is bound up with the secondary flows over the blades. Backflow occurs on the suction surface near the leading edge; however, across different spans, flow separation occurs on the suction surface near the trailing edge. The requests for blade modification are opposite in pump and turbine modes. Significantly, hydraulic dissipation of the draft tube concentrates within its 0.5D2 segment upstream. The dissipation there is bound up with the transport of two types of vortex ropes. The originality lies in evaluating hydraulic dissipation and explaining the high-dissipation zone with the specific unsteady secondary flows in pump and turbine modes of an RMFP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call