Abstract

Fruit and vegetable waste (FVW) are characterized by high-water content. Solid-liquid separation of FVW by crushing-extrusion physical pre-treatment provides fruit and vegetable wastewater (FVWW), and then for anaerobic biological treatment to recover methane, which is considered a cost-effective approach. However, anaerobic treatment of FVWW faces difficulties with low methane productivity and over-accumulation of volatile fatty acids (VFAs). In this study, the expanded granular sludge bed (EGSB) reactor was used for the anaerobic treatment of FVWW and the regulatory strategy to alleviate over-acidification was proposed. When the influent chemical oxygen demand (COD) concentration was 10000 mg/L, the hydraulic retention time (HRT) was 2 days, the organic loading rate (OLR) reached 5 g COD/L/d, the maximum methane productivity reached 301.14 ± 2.32 mL/g COD with a COD removal rate of 96 % ± 2 %. Lower VFAs accumulation was observed when decreasing the influent COD concentration to the same OLR compared with extending HRT, resulting in 38.5 % higher methane productivity. Decreasing the influent COD concentration not only benefited the enrichment of acetogens and hydrogenotrophic methanogens but also specifically enriched syntrophic bacteria. The enhanced syntrophic acetogenesis and hydrogenotrophic methanogens maybe the main reasons for promoting the degradation of propionate and butyrate and improving the methane productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.