Abstract

Handwritten character recognition remains a challenging task in various domains, including handwriting analysis and document digitization. This task poses a significant challenge because of the variability and complexity of handwriting. To address this, it is crucial to develop different methodologies that enhance accuracy and efficiency in recognition. This research evaluates the discrimination capacity of a classifier that combines together the Hu Moments features extraction technique and the k-nearest neighbors (KNN) algorithm for the purpose of handwritten character recognition. The authors worked with handwritten characters from the English alphabet where each character is represented in two handwritten forms. The average accuracy of recognition was 82.69%, that conforms the efficiency of the proposed classifier. This research contributes to the field of automated handwritten recognition and highlights the necessity for improved techniques in character analysis, which has implications for handwriting recognition in different contexts, linguistic studies, document digitization, and other applications where character recognition is crucial. This is the first study that aims to apply the combination of Hu Moments features extraction technique in combination with the KNN algorithm for purpose of handwritten character recognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.