Abstract

This paper presents a coupled finite element approach for modeling geomechanical effects induced by production/injection processes in petroleum reservoirs. The module developed employs coupled- reservoir analysis using CMG IMEX® as the flow simulator and a finite element program in MATLAB® as the stress–strain simulator, in a two-way explicit partial coupling scheme. The flow and mechanical problems are coupled by the change of effective stress due to the change in pore pressure and by varying stress-dependent reservoir properties, such as pore compressibility, absolute permeability, and porosity. The coupling procedure was applied to the Namorado Field (Campos Basin, Brazil) to quantify the impact of the rock deformation on fluid recovery. Based on the cases studied, the coupled analyses predicted higher oil recovery than the conventional reservoir simulations. The results showed that the reservoir deformation can affect its performance and must be taken into account in reservoir-engineering studies depending on production strategy and reservoir stiffness. Besides, the geomechanical calculations were performed only in the coupling timesteps, reducing the computational effort and making this coupling method feasible on a field scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call